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tric radome using geometrical optics were considered for a poinl source. In
this report, we first consider the transmission of a spherical or plane vave
through a curved dielectric interface. The transmitted field is propor-
tional to the product of the conventional Fresnal's transmission coefficient

end a divergence factor DF, which describaa the crogss-gsectional variation
(convergence or divergence) of a ray pencil as the latter propagates in ____.-3
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\:;lo transmittesd ragion. The factor DF depends ou rthe incident wavefront,
tha curvatures of the interface, and the relativ. indices of the two media.
We gave explicit matrix formulas for calculating DF, illustrate its physical “
significance via examples, and point out an erroneous solution in the
P recent literature.
| ~-
! Next, we ltuﬁ the transmission of a apherical electromagnetic wave 1
through a dielectric shell. The two surfaces of the shell are apherical
(either concave or convex), and their centers are arbitravily located in
relation to the source point. The field solution determined Ly the
" geomatrical optics theaury {s given in a simple closed form. Special [
: attention is given to the lens effect of the dielectric shell which
k: convarts the incoming spherical pencil into a focusing pencil.

Finally, we preaent extensive numerical results on arrays of point
sources covered by practical radomes.
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ABSTRACT

In a previous report [3], details of the analysis of & curved dielectric
radems vaing geomatrical optics werc considered for a point source. In this
report, we first consider the transmissicn of a spherical or plane wave
through a curved dielectric interface. The transmitted field is proportional
to the product of the conventional F-esnel's transuission coefficient and o
divergencs factor DF, which describes tlie cross-sactional variation
(convergence or divergence) of a ray pencil as tha latter propagates in
the transmitted ragion. The factor DF dependa ou: the incident wavefront,
the curvatures cf the interface, and the relative indices of the two media.
We give explicit matrix formnlas for calculating DF, illustrate its physical
significance via examples, and point out an arroneous noluticn in the
recent literature.

Next, we study the tranrmiasion of a spharical electromagnetic wave
through a dielectric shell. The two surfaces of tle shell are spharical
(either concave or convex), and their centers are arbitrarily located in
relation to the source poirt. The field solution determined by the
geometrical optics theory is given in a simple clcsed form. Special
attention is given to the lans effect of the dlelectric shell which
converts the incoming spherical percil into a focusing pencil.

Finallv, we present extersive numerical results on arrays of point

sources covered by practicel radomes.
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I. INTRODUCTION

. Many practical antennas are covered by radomes, vhose effects on
' the antenna radiation are of coneiderable importance, especially in
today's high-performance radar/comsunicaticn systems. 1In the past
quarter of a century, several standard analyses have been Jevised for
analysing radome effecta. Nona of them {s exact, and imsprovements are
L always needed. The present report described an effort in this direction,
- A typical radome problem may be stated as follows. Let an sperture
antenna A, for instance & horn, a slot, or a conformal array, radiate a
known field fi(;) in free space (see Figure 1). A protective shield or
radowe I is placed around antenna A. The prodlem {s to determine the
! radiation field E for the composite structurse, i.e., the antenns A
vadiating in the presence of the radome. This problem has received a grest

> desl of attention from many researchers during tha last two decades, and a

so-cslled "best available'" method for attacking this protlem appears to
have emerged. A brief description of this method 1is given bhalow.

(a) In the vicinity of I, the incident field ii is not a ray field
(locally plana wave). To circumvent this difficulty, let it b2 resolv~d

inte & spectrum of plane waves, namely,

Bt - I dk_ J dk_ Bk eikT (1.1)
Y 1 2 f. *i - -1:';
W(k) = (3;] dx J dy E"(r) e . (1.2)

Here, k = (kx’ky'kz) i{s the direction of propagation of the plana-wave

spectral component., The spectral wave number in the z-3iirection,
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(a)

free gpace

Figure 1.

Figure 2.

(b)

Two chnices of incident diresctions:

radome environment

Antenna A and radome L.

Al and Pl.
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may be real (homogenous plane wave) or imaginary (inhomogenous plane
wave). The weighting factor ﬁ(ﬁ) is the amplitude of the plane-wave

spectral component propagating in the direction f.

(b) For esch plane-wave component, a tranomission coefficient matrix
EO(I) for a fiat dielectric slab can be obtained from any staudsard text on
EM theory. The subscript zaro of TO indicates that it is derived from the
assumption of a plane-wave incident field. The transmitted field it(?) at
point 2 on the outer surface of I is calculated from the formula

t - m > %+ dker
BC(2) = f dk r ak Ty WK e . (1.4)

(c, Once ﬁt(Z) is known for all points on the outer surface of ¢,
equivalent surfoce current sources (3(2), E(Z)) can be deternmined. The
convolution of the source with the Green's function gives the desired
radiation field which is expressible as

r - =
ER) = f‘; G T+E, 04 . (1.5)

]
outer I

The approach described above is of course theoretically sound. However,
its faithful execution is impractical because of the extremely llborioua
cumerical integrations in (1.4) and (1.5). In the wall-quoted analyses

by Paris [1l] and Wu and Rudduck [2]), the numerical integration in (1.4)

is avoided by approximating thne transmitred field at point 2 by

K. .7

LA CIRER Ny V(K e 0 (1.6a)

where the incident diraction is determined by

S R U VU P VP VE

i
!
1
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‘ IO = actual ray direction Al, or the direction Pl of the

Poyanting vector of Ei (Figure 2). (1.6b)

Note that the upproximation in (1.6) is to describe fi by a planz wave.

S s e

Since the radome ia in the near zone of the antenna, this plane wave

approximation for fi descrided 12 [1], [2] does not seem to be a good one.

In the present report, we approach the radome problem from a different

* viewpoint. Instead of decomposiug the incident field ii into a plane wave

NS

spectrum, we approximate the finite-gized antenna A in Figure 33 by an

arrey B in Figure 3b. Esch element in array B radiates a spherical wave.
Those spherical wave constituents, transmitting through the radome I, are
superimposed to give rise to the desired radiatiou field £ in the far zone. 'i

Thus, the key step in the present appvoach is to determine the transmission

-

of a spherical wave through a curved dielectric shell. . E

We shall apply geometricsl optics to solve the transmission through i
the curved radome. Specifically, we fivst study in detail the different
aspects of refraction at 2 single curved dielectric interface; second, we

analyze the behavior of a spherical dielectric shell; and third, we apply

our theorv tc various practical radomes.

5




Ar aperture antenna A inside a radome is approximated
by an array B. Each point source in array B radiates

a spherical wave.

Figure 3.

)
B3, :
P A
AR /2 RN ‘
.

Transmission through a dielectric shell due to incidence

Figure 4.
from a point source at PD'
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II. DESCRIPTION OF PROBLEM

The geometry of the radome problem under consideration is sketched
’:' in Pigure 4. A point source at Po prcduces a spherical wave vhich goes
through a curved dielectric shell with nonunifora thickness. Ray

B techniques are used to determine the field at point P3 on a given surface
outside the ghell. First, let us descrite the various elements involved

Ff in the problem.

Coordinate Systems and Tiwe Conventiou. The main coordinate syatem

A A A
1

is the rectangular system (x,y,z), whose origin 1s chosen at the source

noint P0 and the z-coordinate is in .e direction of the besm maximum

L of the antenna. Other coordinate systems at points ?1’ Pz and P3 along

the ray are defined later. The field is tiwe-bharmonic with the time

> factor exp(+jwt) which {s suppressed throughout.

Source. We assuma that the source has a well-defined 'phase center"”
at point PO. the origin of the coordinate system (;,;,;). and radiates
a sphericeal wave danoted by (Ei. ﬁi). If the antenna is an array of point {
sources, it is necessary to consider each element in the array separately

and superimposc their final fields at the observation points.

Dieleactric radome. The radome is a dielectric shell with nonuniform

thickness of relative diele:tric constant € " e/to or refraction index

n= e, and 15 btounded by the inner and outer surfaces 21 and 22.

respectively. The inner surface I, (near the scurce) is described hy
1

the equation:

z = fl(x,y) » for 8 < x< b1 end ¢, <y < d1 . (2.1) i

i

The outer surface 52 is given by the equation: 1
i

i




g - fz(:.y) , for a, < x bz and €y <y < ‘2 . (2.2)

It is not necessary to know the analytical form of the functions fl(x.y)
aml fz(x.y). In computation, only a set of discrets data points

(xﬂ.yn.fn} witchna~ 1,2,...,N is needed for the description of f(f1 or (2).
Thess points are fitted dy a cub’c spline wvhich givea asutomatically firat

f ard second partial derivatives of £, i.e., 3f/3x, 2£/2y, azflaxz. azf!axay.

and azt/ayz. Thare are two requiresents for the cubic-spline fit:

.t

(1) che data points can be distributed over a randowm grid, but they must
be dense enough o duscribe thu fine details of :(t1 or tz): (11) the
domain of the data points (a < x < b and ¢ < y < d) must be somawvhat

' greater than the area of I in which the incident ray is expected to

e s i

intersect the radome.

Observation points. Observation point PJ is located on a preapecified
surface ts, which can be eithar one of the following two types:

and an infinitely large redius.

e il s e,

(1) Spherical 23 with center at Po
In this case, P3 is in the far field, and the field at !3
calculatad by the ray technique is the final resulr,

(11) Planar 23 vhich i{s just outside the radome and normal tc the

g-axis. In this case, wa have to integrata the field on t3 to 1

ohtain the far field.

In later calculations, we use mostly the spherical 23 in (L).

v e amvem—— o
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IITI. FIELD SOLUTION BY GROMETRICAL OPTICS

For a given incident fleld (i‘.ii) genarated by the source at point
PO (Fig. 4), the asymptotic nolution of the field at poiat P3 is deter-
uinad using geomatrical optics [3], [4]. The methad of solution 1o

described bdalow.

A. Mathod of So utioa

Congider & ray in direction (9,¢) extending from the gource point Po
r2 the point Pl ou tl. The source regior (Region 1) iz homogencuus and
isotropic; hence, t*~ ray is a straight liune along the um?!: vector ;01.
First, the distane o1 is found and! the coordinataes of point Pl axe
determined. Then the unit vector il norsal to tha surface :l at pouint Pl
is found (Figura 5)., The plane of vectors ;01 ard ﬁl establishes the
incident plane. The angle between these two vectors is tha incident
sngle oi. Using Snell's lav, the refraction angle qi is obtained, which
establishes the diraction of the transaitted wvave, ;12. in Regilon 11
(dielectric). The ray in Region Il is a stiaight line along the unit
vector ;12. Three courdinste systems (;1,;1,;01). (;1,;1,i1). and
(;i.;i,;n), with common origin at poiiut Pl' are then established.

They belong to the incident ray, the surface Zl. and the transmitted
ray, respsctively,

The incident field (fi.ﬁi) is split into a normally polarized field
(fin.ﬁip), (E-vector normal to the incident plane at PI) and a parallel

polarized field (fip.ﬁi“). The transmitted field at point P1 is obtained

as follows:

tn _ .n 2in tp _ : tn
il £y il , ﬁl Yr, ™ Il

e v
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ta _ P gin tp tn :
Ble? @, TPz Ny, (3.1)

in vhich t? and t; are transmission coafficients for the normal and

parallel polarized ?‘telds, respectively,

4 t

:n ) 2 . . Y cos “l - cos °1
1 1+ vnl ' nl Y, coe a cos oi
0 1 1
t t

P . 2 - Z cos al‘ . Llcon 2& | (.2

1 1+ ’ pl { o i e

pl zo cos a, cos o,

ul—- :9-.—1-— gl. —‘-—-. - L.'r_
Y0 zo / Mo 120% v Y z /uo nY0 » 0 / ¢ €y o

Note that the subscript 1, in “:“ for example, signifies tha field
evaluated at point 1.

The transmitted field at Pl is incident on :2 at point Pz. Coordinates
of this point caun be found from the knowledge of the coordinates of point
Pl and the transaitted ray direction ;12. The field values, in going from
P1 to Pz, undergo some change which is dependent on the divergeance of the

ray. Thus, wes have

-Jkr
i 12 2t
i, - (0F,,)e il (3.3)

in which k = nko is thae wave number in the dielectric amnd nrlz is the
divergence factor for the pencil of rays travelling from P1 to Pz in the

dielectric. It is given in {3), as

. I, ,-1/2 11, .-1/2
DF, = (L4 e )7 7 +qpr,,) (3.4)

10




in which qil and qix sre the principal curvatures (inverse of the radii

of curvature) for the ray pencil i Ragicn I1. Thay are found from the
curvature matrix of the transmitted ‘ay at point '1' The matrix itselt
is found from a foroula involving the curvature matrix of the incident
ray and tnat of the surface :1 at point ’1‘ The curvature matrix of

the tranemitted ray pancil at point P1 43 also used to find the curvatura
matrix of the ray at poin: ’2 inc{dent upon the surface tz.

Having the field {ncideat upon 22 at point ?2. the ray direction ;12.
and its curvature satrix, we can proceed, in a manner similar to the
transmission through tl' to find the ficid transmicted through Iz et ’2
(Figure 6). Thus, a unit vector iz. normal to :2 is obtained, and
together with ;12 defines the incideace plane st point Pz. The incidence

angle a; (cca u; " iz . ;12) 1s then calculated. Again, Snell's liw is

invoked to find the refraction angle :; at Pz. This angle apecifias tha
ray direction T2y in Region I1. (ou’.sid~ the radome). Thrue cocrdinate

- - -

systems (x;.y;.ru). (“2"7'N2) and (;§.y§.tz3) with common ori{gin a:

point Pz are them introduced.

The field (ii.ﬁg) ircident upon I, st P, (s resolved into parallel

2 2
and normaliy polarized ¢{21d-, {roe which the transmitted fields are found

an follows:

tn _ .0 3in tp : tn
IO A L A
KE® - P yin ES? a2 4" & ‘ (1.9)
2 2 M2 ’ 2 02  Ta3 .

11
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in wvhich
3
o . 2 .. 1 coe a
1]
2 1+ Va2 nl n cos o;
cos ut
t'z’ = r'%“v_'_ v - n '—-—'l . (306)

The fiald at odservation point ’3 is then found from the transmitted field

at Pz. such that,

-jk.t
33 - (0!23) . 0°23 f; . (3.72)
in which
i} I -1/2 11 ,-1/2
or,, a+ Q) Tay) Q-+ q r23) R (3.7)

and qil‘ and qixl are the principal curvatures of the ray pencil in
Region II1. Thav are obtained from the curvature matrix of the
trensaitted ray at point ’2‘ This matrix is obtained from a formula
alreaady mentioned in connection with transmission through tl. For

a typical factor in Eqs. (3.4) and (3.7b), the following square root

convention is used:

+|t|, 1f £ is real
f=a1//T+qre (3.8)
+3|f|, if £ {a imaginary

It should be mentionad here that we have ignored multiple reflectiors
in the dielectric radome throughout our analysis. Details of the analysais

may be found in {5}.

We now summarize the final results obtained so fur. The point

source at Po (Figure A4) radiates z spherical wave described by

12




. g A g .

-jkog
1 - -~ -~
£ (r,9,0 {;7;;7 (P(,0)8 + Q(8,0)8),

=ikor . . .
- %;7r-7 {(P cosécoad - Q eind)x + (P oinecosl + Q cosd)y - P sinfs)
0
(3.9e)

R RN & (3.9%)
vhere (r,0,4) are spherical coordinatas with origin st ’0‘ The pattern

functions P(8,9) and Q(8,4) in (3.9) are given. At poiat P, (Figure 5 ),

ve decompose the field into two comprnents in the directions of (xi.y:). i.e.,

B e Pry,000 = @eapay ¢ dpvpyy L B oYy 2 E L 0.10)

At cthe ooservation point Pa. ve axpress the field as follows

~

e @i Dy . Bt 8 6.

The two componants of ES in (3.11) are found from the metrix equatiom

B ex) PePaxyex))  melefixyey D) gtxt]
5 B! 172 72 171
(oF, ) ( “Hho(mr1a*Tay)
= (D DF.,.)e ¢ & - ay A
- 127923 -1p.a,L ¢ ¢ 1%
E;-y; n ‘1‘2(’2 '1) (yz yl) !1 2
(3.12a)
or more cospactly,
- jk (ar,, + r,.)
E = (ON o 1275 (3.12b)
13
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ta (3.12), a te the refraction (ndex of the dielectric, k, is the
free~space wave number and t:. tg. t:. tg are the normal and parallal
transmission coefflcients at points '1 and Pz. raspactively, as givan
tn (1.2) and (3.6). The two divsergenca factors are given in {J.4) and
(3.78). Their calculations constituta the major effort of che prerent

solution.

14
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IV. REFRACTION AT A CURVFED DIELECTRIC INTERFACE

A. Introduction

The refraction st a dielectric interface ier of fundamental importance
in electromagnetic theory. If the interface {s uwrbditrarily cur cd, the
only available soluticu is the ore derived by tha geometrical optics theory
(GO). Such a solution consists of two main ingrediants: the well-known
Fresnel formulcs for the transmission and reflection coefficients (due to
A. J. Freanel in 1823) and s so-called "divergence factor DF." Surprisingly,
the sclu“ion of DF was derived as early as 1915 by A. Gulimzcand (6}, but
its application vas no: widely racognized in the electromaguetic/optical
community until very recently. 1In 1972, Deschewps (3], [4] rederived
Gullstrand'y result by using "curvature matvices” for describing curved
surfaces/wavefronts, thus resulting in grealer clarity and simpler
computatioun.

In this chapter, we supplement Deschamps' results Ly giving
explicit formulss for calculating various curvature matrices and by
illustrating the physical significance of DF via analytical and numerical
examples, Another motivation for the present work is to compare our
solution with the one 4dascribed by Snyder and Love [7]-[9] for the same
problem. 1t is shown that these two solutions are not in agreesent.

We believe that the Snyder-Love solution is incorrect.

15




B. Final Solution for the Refracted Fields

We begin with a statement of the problem. Two infinite dielectric
media with refraction indices n, and n, are separated by a curved inter-

face T (Figure 7)., which is described by
L: z = f(x,y) . (4.1)

The origin of the (x,y,z) conrdinates is at the source point 0 in medium
1. The source emits a splierical wave, whose electric field at an obuar-

vation point T = (r,0,9) is given by [for exp(juwt) time convention]
L

E'®) = & [0P(6,0) + 6Q(8,0)] 4.2)
vhere kl = 2w/x1 = nlw/c, and (r,9,4) are the spherical coordinates
with origin at 0. The problem at hand is to find the transmitted field
Et at a typical point 2 in medium 2, and the reflected field BT at a
typical point 3 ir medium 1.

We attack the problem by the geom=trical optics theocy (GO) [3], (4].
Referring to Figure 7, let us concentrate on a typical incident ray in the
direction of ;1 emanating from the source at 0. The "outward" normal to
surface T at the refraction pocint 1 is ﬁ. The plane defined by the ray
01 and ﬁ is the piane of incidence. With respect to this plane, we resolve
the incident fie1ld Ei into two components: perpendicuiar component Ei

and paralla]l component Bﬁ . We introduce a scalar “i such that

Ei s, <or perpendicular polarization

A

=1 (4.3)
, for parallel polarization
l

u

Similar decumpositions and notations apply to Et and E°. Then, the final

solutiun derived fror GO has the followiug form

16
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Figara 7. Refraction at a curved dielectric interface I.

17

ko s il

j
!




L gy
‘-'.Iﬂ .

LT e

ki £

-jk,b
W@ - en, Te 2 Wt (6.4a)

=ik, ¢
W(3) = OGP, R e 1 A . (4.4b)

The various factors in (4.4) are explained below: T and R are the well-

known Fresnel's transmission and reflecticn coefficients (for a planar

interface), given by

T = —2 R=icY (4.5)

n(ccs uzlcos al) , for perpendicular polarizestion
Ln'l(cos azlcos al) ,» for parailel polarization

n= (nzlnl) = relative refraction index.

The incident angle ay and transmitted angle a, are related by the 3nell's law

-4 .
sin a, = S sina, . (4.6)

For n < 1, a critical incident angle e, exists, where
sin a, = n , ifn<l . 4.7)

1f e, > a, o, defined in (4.6) becomes compl.. = and tha simple vay picture
shown in Figure 7 is lost. It is not imrmediately clear how the present €O
snlution must be modified. Therefsre, in this paper, we exclude the case

a; > A whea n < 1, The factor (Dl-‘)2 in (4.4a) is the so~called "divergmuce

factor" (3] of the trausmitted ray pencil at point 2 in reference toc vnoint 1.

It is given by

18
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(m‘)2 = 1 1 . (4.8)

T+ (/R,) "1+ B/R,,)

Here (RZI’R22) are the two principal radii of curvature of the trancmitted
wavefront passing through point 1. The sign convention of R21(or 322) is
as follows: R21 is positive if the transmitted rays in the corresponding
normal section are divergent, and R21 is negative if the transmitted rays
are ~onvergent. The square roots in (4.8) take either positive real or
negative imaginary value. Thus, (DF)2 is positive real (no focus between
poiats 1 and 2 on the transmitted ray), positive lmaginary (one focus
between 1 and 2), or negative real (two foci between 1 and 2). The factor
(DF)3 in (4.4b) is the divergence factor of the reflected ray pencil at

point 3 in reference to point 1. It is given by

(DF), = 1 1 X (4.9)

3
1+ (c/Rn) V1l + (c/R32)

The determination of the four principal radii of curvature (R2J’R°2’R31’R32)
is the key to the present problem. In Section IV.C, we give an exolicit,

step~-by-step description of their determination.

In summary, for the refraction problem in Figure 7, the final solutiors

for the fields of the transmitted and reflected rays are given in (4.4).
This solution is based on GO. It is valid for high frequencies, and for

all cases, except when total reflection occurs (n < 1 and e > cc)‘

19
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C. Calculation of Curvatures ¢f Rofracted Wavefronts

For an arbitrary futerface I and an arbitrary incident ray 01

{(Figure 7), the caiculation of the four radi{ of curvatures (sz,kzz.kal.kaz)

is not a simple task. In this sectivn, we presant a systematic and explicit

procedure for doing this calculation.

Coordinate systems at poiant 1. Congider a ray leaving the source st O

- b

in the direction (9,4), which intevsects the surface I described ian (4.1)

k; at point 1. The distence a is determined from the non-linear equation
acos 8 » f(x = 2 ain 6 cos ¢, vy = a sin € ain ¢) (4.10)
. The unit vector in the direction of the incident ray is
= ;1 - x sin 0 cos ¢ + ; sin 6 sin ¢ + z cos 9 (4.11)
The unii normal ﬁ of surface I at point 1 is
(4.12)

. 1 A - -
N x (-fx x - fy y + 2)
where A = +(1 + f +f )1/2, and fx’ for euample, is the partial derivative

of £(x,y) with respect to x. By defining 4 positive, we have chosen N in

e

the forward direction wich respect to the {ncident ray. Vectors 3 and N

At point !, we introduce four orthonormal

define the plane of incidence.

base vectors:

(xl,y1.~1) for the incident ray 01

(az.yz,:z) for the transmittad ray 12

-

(xJ.yJ,z ) for tha reflectad ray 13

A a -

(u,v,N) for the surface {

20
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We choose

-

AR AT A S (6.13)

= 3 unit vector normal to the plane of incidence .

Then it follows

- - -

-~ -
umvxN , x =¥

" a " %o for n = 1,2,3 . (4.18)

The incident, trancmitted, and reflected rays are respectively in the

directions

3 *u sin oy + R cos ay (4.15a)

;2 - ; sin a, + ﬁ cos a, (4.15b)

2y ® ; sin 3 - ﬁ cos 3, (4.15¢)

where

sin a, * n? stn ay » 0<a,,a, w2 . (6.154)

Nete that, because of the particular choice in (4.13), both a, and a, are

alvays positive, and have values in (0,r/2).

Curvature matrix of surface I. At point 1 on surface [, the following

two vactors lis in the tangent plane of the surface:

- -~ -~

T "%+ f‘ z (4.16a)

?ly ~y+f 3 (4.16b)
21
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where (x,y,x) are evaluated at point 1. With respect to thu bsse vectors

(;1x';1y)' the curvature matrix of I is given by [10]

e, G, - £ F f. E =-4eo/T

14 - 55 s S L
Q = & (4.17)
1" 3
16, - 8f1  5E - 4T
vhere 4 = +(]1 + f: + f;)l/2
H 2 - - 2
By miefy , Fpeff G o=l+f
-1 -1 -1

All (x,y,2)'s are evaluated at point 1. Now we transfer the curvature

matrix with respect to (;lx';ly) to that with respect to (u,v), namely,

q = Al g A (4.18)
vhere
- .‘ -
T1x'Y rlx v
A - »
-> - - -
tly u rly

It may be shown {10] that a principal radius calculated from (4.17) or (4.18)
has a positive (negative) sign {f the normal section of the surface bends
avay from (toward) the normal i. For example, if I is a sphere with radius

¢ and the normal N points away from the sphere center, we have

Qz - Qx - . (‘-19)
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We note that the present sign conveniion for the surface curvature is the
same as that used in (4], but opposite to that in (3}, [10].

Curvature satrices of wavefronts. The incident wevefront pessing

through point 1 is spherical vith s radius a. Thus, its curvature matrix

Q1 vith respect to basea vectors (:I.yl). or any other orthonormal base

vectors, is

(4.20) {

The curvature matrices of the transmitted and reflected wvavefronts passing

through 1 are expressed vith respect to base vectors (x,.;z). and (;3.;3),

respectivelv. They are denoted by Q2 and 03. The solution of Q2 is found
from tha fullowing matrix equation [4]:

n o/ 12 B2 = B{ Q1 Bl + (n cos a, = cos °1) Qz (4.21)

{

vhare ;
~ A -~ oA ‘
[x u X,V cos o, 0 J
Bl.l - i
L?l*u Yy v Q 1 i

!

i

ST |
[xz°u X,V cos a, 0 i

B . . N . ;
[yz'u Yo'V 0 1 !

The solution of Q3 is found from the followirng matrix equation

23 .
i

N
. Y T oY -
h R T i




T T
33 Q3 33 - l1 Q1 '1 - 2(cos °1) Q: (4.22)
vhere
‘ xs'; ;3-; -cos a, 0
By . . . " .
y3'u ya-v G 1

Principal radii of curvature of refracted wavefronts. Once matrices

Q2 and Q3 are detarmined from (4.21) and (4.22), they may be Afiagonalized
in a standard manner to fiand their eigenvectors (principal directions of
the wavefront) and their eigenvalues (principal curvatures) {10}. 1In

) particular, the principal radii of the zransmitted wavefront (Rzl,Rzz) are

the roots of the following quadratic equation

(4.23)

1 1
;T -1 (trace Qz) + det. Q, = o .

1f Q2 in (4.23) 1is replacad by Q3, the twe roots are the radii (RJI'R32)

of the reflected wavefront.
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D. Special Case: Spherical Interface

To illustrate the results obtained in the previous two sections,

let us concentrate on a special case in which the interface I is spherical

with redius |o|. as showvn in Figure 8. Following our aign conmvention, the

radius of curvature of [ is

{+[p] , 1f L is concave vhen viewed from tha source (Figure 8a)

-lp] , 4f L is convex (Figure 8b)
(4.24)

Without losa of generality, we assuwme that the incidant ray from the source
at point O is in the direction (6,4 = 0). The plane of incidence is then
the x - 2z plane. Making use of the foraulas in Section IV.C, we find that

the princlpal radii of the transmitted and raflected wavefronts passing

through point 1 are

. 2 1 2 1 ~1

R21 = (n cos °2) E: cos” a, + 5 {n cos a, - cos 31)] (4.250)
L 1=

R22 - + vy (n cos a, = cos ul)J (4.25b)
_ -1

S § ___2___] (4.268)

a1 (a8 P cos a,
2 cos ul]-l
R32 - d; - = ———1 . (4.26b)

It can be shown that Rzl and R31 are the radii of curvature of the normal
sections in the x - z plane (plane of incidence), whereas R22 and R32
are those in the orthogonal directions. Since in general R21 ¢ Rzz and

R31 ¢ R32, the refracted and reflected pencils are astigmatic.

25

s




POINT O: SOURCE POINT 4: CENTER OF Z

(a) CONCAVE : p=+lpl (b) GONVEX: p=-ipi ;

Figure 8. Refraction at a spherical dielectric interface, 1
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(A) MNormsl incidence. Por a, = O, (3.25) and (4.26) dbecoww

1
=1
1 n-1
l21 R!Z - nE: + -—; ] (4.27)
-1
e 1_2
Ry Rn-[. p] . (4.28)

Thus, for normal incidenc?, dboth refracted pencils hava spherical wavefronts

(no longer astigmatic). The relation in (4.27) may be raarranged to (ead

n—n"':'*“-l (4.29)
21 ?

wvhich 1is the well-kiuwn lens aquat.ion in optics. (See for example

Eq. (40-14), p. 678 of [11].) Note the correspondin: notatious used in {11]
and here: n + 1, n' *n, 3+ o, 8' » (-RZI)' and R + (~p).) The divergent
iacid 'nt pencil from a point sour~a 13 converted in:s 4 convergent transmitted

pancii in wedium 2 when R,. < 0. This occurs when

21

. > |\_._8__‘;) >0 . (4.30)

Y
-

If p > 0 (concave dielectric intarface shown in Figure 8a), thic is posuidble
ifne (nzlnl) < 1. If p <0 (convex dielectric interface shown in Figure 8b),

this is possible {f n > 1,

(B) Comparis.a with Synder and Love's result. In a recent article (7],

Synder and Love conslder the problem sketched in Figure 7 for &n incident
plane wvave (source distance a + = in Figure 7). Their final result is in
disagreement with ours. To show this disagrcsment, let us concentrate on
a simple case (Figure 9): a concave, spherical, dielectric interface s

illuminated by an incident plane wave wh.ch is given by

27
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Figure 9.

Kefraction at a concave spher
normally incident plane w.J/e.
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.o=Yky
ﬁi(x,y.x) eze ! . (4.31)
The problem is o find the high~frequency solution of the refracted {ields
along the y-axis. Based on C0O, our msolution {s given in (4.4), (4.5), (4.8),
(4.9), (4.27), and (4.28) with a -+ =, Using the coordinate system in Figure 9,

the trunsmiftted and reflected fields are

. -ik.y
£ (0,y,0 » air L LT v (4.32a)
e
Ll + [ LI Y ]
.r 1 ik,
2, 1 l1-n 1
- \
b {0y, 0) 'ILl = @yl75)) 1+ ¢ p oy <0 ' (4,320}

The factors in [ ] in (4.32) are divergence factoii. The intensity or power

densit of the incident field on the central ray (along x = z = Q) is given by

i

1 e kely- (B! x @) - (ny /120m) vatts/m? (4.33)

which i3 independent of y. This is due rto rhe fact that the incident field
i{s a plane wave ind »ll incident rays are parallel. The intensity of the

refracted field on the centra! ray does vary with y, namely,

t ; 2 . 2
Lo (v) 2 i
e P
r t 2 2
I s li ;:] 1 , y <0 . (4.36b)
1 b1 - @lylso)

At the focal point of the reflected pencil v @ -p/2 in medium 1, the intensity
¥ in (4.34b) predicted by the present GO becomes infinit: as expected. For

the same problem sketched in Figure 9, Snyder and iLove's solution is given
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' in Fqs. (29) through (34} of [7]. For the case of normal incidence

(ai = 0) and central ray (x = z = 0), Snyder and Love's soluvticn reads

Eg, (0,7,0) -zlin , p>>y>0 (4.35a) ‘ 3
. - P Jkoy
; BEoyo=z23532 0, y<o (4.35b)
i

|
3
#} which shculd be compared with our solution in (4.32). We note that

(1) divergence factors (DP) end (DF)3 are missing in (4.35), and (i1) the
propagation phase factor exp(-jkzy) is missing in (4.35a). Thus, we believe
: that (4.35) is incorrect. Furthermore, for each incident ray (fixed 01)‘

Snycder and Love define a "power transmission coefficient TSL" by

Al 8 et DN sl L

S (Eq. (35a) of [7]) |

i';--. r ;

= Tgp =1 - [-I-; : (4.36) !
I ]

e Lt n e teoa

Ls may te seen from (4.34h), the intensity 1F is, in general, a function

of positioﬁ (x,y,z), because of the divergence/convergence of the reflecrad
rav pencil, Then, TSL when calculated correctly is also a function of
position, and does not have the usual significznce asscctated with the

"power tr :wmsmigeion coefficient.”
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K. dumericesl Results aad Discuesiox

For (he refidction protles sketched in Figure 7, the fipsl solution
for the transmitted field u® into mecium 2 is given in (4,4a), when
the incident field is given in (4.2). In this gection, we present zome
nuperical results for u® for various intorfaces and source locations.

We cunsider three types of iuterfaces: the spnerical incavface

desczibed by

(x/A) =1 - [L- % + vzmi]m , 4.37)

the paraholoidal interface described by
i) = &+ vl (4.38)

end the hyperboloidal intcrface dascribed by

2
+ yz)/xixll' -1 (4.39)

o]
L

1 o
(z/Al) = 5[1 + 2(x

where Al is the wavelength in medium 1 in which the source is located,

For =asy comuarison, we have chosen the above interfaces such that they
all tave tne same curvature in the axial direction {Figure 1C). There are
six source locations, indicated by rumerals inside a small circle. When
the source is at location 1, for example, medium 1 is on che right and
mediuz 2 on che left, arnd the interface is concave. The source is assumed
to be y-polarized. We calcuiate the transmitted field in the E-plane
(plane normal to ;) and H-plane (plane normal to ;). In these two planes,

the incident field Js assumed to be
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Figure 10. Taree dielectric interfaces. At z = 0, all three interfaces
l.ave the same radius of curvature of 1 ‘Al.
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=ik, r 1l , E-plane
>{ -+ e 1
E(r) = == (4.40)

.

y 1 , H-plane

Thas, ia the E-plane, the ﬁ-vector is parallel to the plane of incidence;
vwhereas in the H-plane, the E-vector is perpendicular. The observation
puint 2 is in medium 2 (Figure 7) with distunce b + = (far zone).

We calculate the normalized far field defined by

E-field when o, ¢ n,
E~-field when n, =n,

B (2)
T2

Substitute (4.2a) and (4.40) into (4.41). Under the condition b + =, we

EN =

. (4.41)

have

EN - % T/R21R22 , b=+ . (4.42)

Here a is the distance between the sourc2 and the interface along the
incident ray, ;nd T is the Fresnel's transmission coefficient given in (4.5).
The factor /§;I§;; is the radius of the Gaussian curvature. 1In presenting
the numerical results, we plot EN as a function of 8, where 6 is the polar
angle of observation point 2 measured from a line parallel to the z-axis

and passing through the source point. The relative index n = n2/n1

igs always set at 2 (transmissiorn into a denser meiium).

Concave spherical interface. Figures 11 and 12 show the E~ and H-plane

.ar-field pattern EN as a function of 6. Note that the field strengths
increase as the source moves closer to the interface (smaller a). This
is mainly due to the fact that EN is inversely jroportional to a, according
to (4.41). The Gaussian curvature Ji;Ii;; decreases with a, but not enough
to offset the factor (1/a) in (4.41). For source 3, wvhich is at the center
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of the spherical interface, all of the incident rays are normal to the
interface. It can be showw that 121 - I22 e g, Thus, EN calculated

from (4.41) is equal to T, vhich is 0.667 for the present case of n = 2,

Of particular interest is the H-plane pattem of source 1 showm in Pigure 12.
Note the marked asymmetry in the far-field pattern vhich is due to the
asymmetry of tue surface with respect to source 1. Figure 13 shows the
variation of the axial far field when the source is moved along and

parallel to the z-axis. It shows clearly the increase of the field as

the source moves closer to the interface.

Councave paraboloidal interface (Figures 14 and 15). The far-field

patterns for the concave paraboloid are quite similar to those for the
spherical case. However, the pattern variations are more pronounced.

Concave hyperboloidal interface (Figures 16 and 17). Note that the
far-field pattern due to source 4 has a dip instead of a peak in the
axial direction. This is in contrast to the situations in Figures 11, 12,
14, and 15. There i3 another fact worth mentioning. Because of the choice
of the same axial curvatuie for the above three interfaces, the axial field
is the same for al! interfaces when the source is at 2, 3, or 4, However,
for source 1, which is displaced from the symmetry axis, the normalized
axial field EN(6 ~ 0) increases from 0.826 for the spherical surface to
0.954 for the hyparboloid.

Convex interfaces. The E- and H-plane far-field patterns for a
convex sphere, paraboloid and hyperboloid are shown in Figures 18 and 19
for source locations 5 and 6. The source locations 5 and 6 were chosen

based on (4.30). Source 5 produces a divergent axial pencil in medium 2,
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Figure 13. Axial far-field variation with source position for a concave

spherical interface.
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whereas source 6 produces a coanvergant sxial pencil; ihe behavior in th=x
non-axial direction is governed by the type of the interface. Thus, ~s
way be seen from figures 18 and 19, the far field in the axial direction
through the spherical interface has a peak for source 6 and a éip for
gsource 5. This is alzc the case for the paraboloid. However, this
behavior is not observed in the hyperboloidal pattern.

For all the convex interfaces, the variation of EN a2s 2 function of
0 in (4.41) is predominantly determined by the radius of the Gaussisn
curvature, VKZIizz, and to a lesser exient by T or a.

Ray Picture. The H-plane pattern due to source 6 for a convex
sphere is given in Figure 19. The corresgouding ray picture is shown
in Figure 20. We launch 6 ravs at 4° apart in the upper half x-z plane
x > 0). The transmitted rays are first convergent, and after croasing
the caust;c surface, become divergent. The incideat rays in the upper
half x-z plane within & 20° angle give rise to transmittaed rays in che
lower x-z plane (x < 0) within a 13.5° angie. There ure two caustic
surfaces associated with the transmitted rays. 7The intersections of
the caustic surfaces and the x-z plane are indicated by crosses and dots.

Similar ray pictures can be drawm for the other cases also.
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F. Conclusion

for the refractior :roblam sketched iu Figure 7, the final geometrical-
optics sclutions f{ny the transmittad field and the reflected field are
given in (4.4). Tuey are applicable under rether general conditions,
napely, the dielezrric interisce deszribed in (4.1) 1s arbitrary, and the
incigent {£i21d in (4.2) from a point souvce is arbitrary. A major step
ir calculating these su .utio.s ia the eavaluation of the divergence factors
in (4.8) an? (4.9), waich involves tve matriz operation des:ribed by (4.21)
and (4.22}., ¢trictly speiking, the present solution ia valid in the high-
frequency limit w + =; heuevar, prasctical experience has shown that

solutions of the present type are reaaso:ably accurate as long as the

radii of curvutvre of the dieleciric intarface are in the order of a

wavelength or wore.
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V. WAVE TRANSMISSION 1HROUGH A SPHERZCAL DIELECTRIC SHELL

A. Introduction

One of the fundamental problems in electromagnetic theory is the
transmission of a spherical wave through a dielectric shell. This problem
has numerous applications in antenna radomes, elecctromagnetic shielding, and
scattering. It appears that solutions to this problem are available only
for the special case where the shell is an infinite dielectric half space.
That case was first studied by‘So-etfeld in 1909, vhereas later research
was summarized in a book by Brekhovskikh (Chapter IV of [12]). In this
chapter, we consider a more general case, nsmely, thes shell has two
spherical boundary surfaces. Unlil.z the Sommerfeld's problem, our case
dnes include the effects of the shell's .urvature and thickness. Therefore,
its solution should be of more practical interest.

To solve our problem rigorously, the spherical wave expansion may ba
used. However, due to the fact that the source location and the two
dielectric surface centers do not coincide, the translatioual addition
theorem for vector spherical wave functfion {13] muat be uscd. (Our problem
is roughly comparable to scattering by three dielectric spieres.) This
theorea leads to a complex series, which makes it very difficult to generate
numerical regults. In this papar, we use the geomstrical optics theory (Gu)
{4], [14)] to calculate the transmitted field in the problem sketched in
Figure 21. Such a solution, though culy approximately valid for high
frequencies, i3 given in a simple closed form. Thus, it allows ua
to study the "cause and effect” of the various parameters in a convenient

marner and gain physical insight.
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B. Solution for Coucentric Spherical Shell
Let us consider the wave transmission problem in Figure 21. The

boundary surfaces of the dielectric shell are two coucentric spheres

vith raditi Rl and Rz (both positive), and with a cosmon center at Q.

The point source at 0 emits a spherical wave described by (for exp jut
time convention)

-Jkyr

B = L [p(2,000 + Q(0,000) .

(5.1)

Here, (r,0,¢) are spherical coordinates of T with origin at 0. Functions

P and Q describe the radiation pattern of the source.

ko - Zw/AO = u(uoso)llz ias that of free space. By using GO [4]), [14],

The wave number

the transmitted field at an observation point 3 is to be determined.

Without loss of generality, we assume that point 3 . » in the (x,z)-plane

with rectangular coordinates (x3,0,z3).
A, Ray Tracing. In accordance with Snell's law, we trace s ray

from source point 0 to observation point 3, via refraction points 1 and

2 (Figure 21). Clearly, all four points, 0 to 3, lie in the same

(x,z)-plane, For a given launching angle 0 of the ray and the distance

c, the other geometrical parameters can be determined from the following

relations:

sin ui = (@/R)sin 8 , a =K [ein(® - ai)]/sin 8 (5.2)

t -1 i i t
sin ay=mu sin a sin a, © (Rllkz) sin @y

t i
b= Rzlsin(gl ~ a,)1/sin a: , sin “; = n sin “;

i t t
xy = a s.n 8 + b sin(6 - ay + al) + ¢ sin (a1 +a. ~a
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t i i

3, = cos 8 + b cos (0 - ci + ni) + ¢ cos (u§ + a, = o] -y + 8).

Thus, for a given (0,c), vea can determine the position of point 3
straightforwardly. On the other hand, vhen point 3} is given, axplicit
formulas do not exist for determining 6. One has to find 6 by trial-
and-error.

B. TField on the Ray. The present vector field probles can be
decomposed into twe acalar ones: one with the electric field vector
perpendicular to the plane of incidence & - ; QL) and the other with
the electric field vector parallel to the plane of incidence (z“).

The final solution for the transmitted fiald E° at point 3 derived by

GO is given by

t i
. £, @) T, B -3k (nb+e)
£@3) - - (OF) e . 5.3)
B (3) T, B (1)
The various factors in (5.3) are explained below: t& and Tl are the
products of che zrans=ission coefficients at points 1 and 2, given by
cos u;' “lr L cos ol -1
T_Lcu'\li-u 1 1+; ; (S.4a)
i cos ay cos a,
[ L <08 ui’ lr cos a§1 -1
cos a; i cos a,
The two components of the incident field are calculated from (5.1):
-jkoa
1 s
E;°(1) = = Q(e,¢ = 0) (5.5a)
By (1) = &——P(0,0 = 0) . (5.5b) - |
|
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The derivation of the divergance factor DF in (5.)) requires some effort.

With the details given in Appendix A, the final result for DF reads

-1/2

V2, .:nc)‘m A + k0" (56

-2

DF = (1 + xllb) + xlzb)

At point 1 or 2, it can be shown that the principal directions of the
transmitted vavefront are precisely the two directions parallel and
perpendicular to the plane of incidence. Here (‘11"‘12) are the two
principal curvatures of the transmitted vavefront at point 1, and

(:21.x22) are those at point 2. They are calculated from the relatiors

X1y " (n con2 u;)-lE% cos? a; +~%;(u cos a; - cos a;)] (5.7a)
K19 ® %: + %;(cos m; -‘% cos ui) (5.70)
Koy ® (cos2 u;)'l {(b + ‘;i)-l a cos? at + %;(col ag - a cos a;)]

) (5.7¢)
K)o = 0l ¥ x;;)'l + %;(coe a; - n cos a;) . (5.7d)

The sign convantion of x is as follows. If « is positive (negative),
the normal section of the wavefrcont is divergent (convergent). For
exsaple, if the transaitted wavefront at point 1 is the same as the
incident spherical wavefrcnt, we have K11 %12 +RI1. For a typical

factor in (5.6), the square root convention is -
+|t|, 1f £ is real
£a(l+nd) /2. ) .8)
+j|£], 1if £ is imaginary

When f is imaginary, it means that the ray has crossed a focus o: the

ray pencii. The (+j) accounts for the well-known (®/2) phase retardation.
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Several general comments about the solution in (5.3) are in order:

| f (1) For the case vhere a total raflection occurs (u; or a§ becomes complex),
the field in the transmitted regicn is not an optical field, and the

present ray solution (5.3) {s no longer valid. (ii) BRxcept for special
cases, e.g., normal incidence ai = 0, the twe curvatures (:21.x22) of

the transmitted vavefront amerging from the dielectric shell are not

equal, Thus, the transmitted penc!l is ganerally astigmatic. (ii1) It

is possible that X9y and/or Kyp are negative. Then the divergent pencil
from the source is transformed into a convergent (focusing) pencil after

propagating through the dielectric shell. (iv) The solution in (5.3)

remains valid for more geometries than the one shown in Figure 21. This
is discussed further in the next section.

C. Generalization of Final Solution

For transmission through the concentric spherical shell in Figure 21,
the final solution consists of two parts:

Part A: Ray tracing formulzs in (5.2) o

Part B: Field solution imn (5.3) through (5.5)

It can be shown that Part B is valil under a more general condition

(Figure 22), namely,

(1) The centers of the spherical shells Q1 and Q2 need not

|
!
i
|

coincide, as long as the four points (0,1,2,3) are coplanar.
(11) The surfaces of the shell can be sither concave or convex.

Looking from the source side, Rl (or Rz) is positive 1if the

surface is concave, and R1 is negative if the surface 1is

convex,
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(c) R, <0, Rg>0

Figure 22.

(b) R| >0 .R¢<0

x-2 PLANE

(d) R, <O, Rp<0

General configurations where the field solution (2.3) caun ve
used. Points (0.1.2.3) must be coplarar.
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Condition (i) is necessary in order ror the scalar traunsmitsion coefficients
Tl cnd't. in (5.4) to be valid. when the four points (0,1,2,3) are not
coplsnar, the perpendicular and parsllel pelsarizations arz rnc longer
uncoupled. Then the scalar Tl ot T“ in (5.3) must da ruplaced by a
(2 % 2) macrix. Alno, (5.7) bacomes more complicated,

For the general con{igurations in Figure 22, thae rev tracing
formulas in (5.2) sre not valid. However, by following Snell's law,
the ray tracing, even in the moat genaral situstion, is conceptually simple.
Thus, inatead of working out a set of general formulas, wea leave it to the
individual problems.

D. Axial Incidence on Sywmetrical Shells

To atudy the features of the present ray solution, let us concentrate
on a spucial case, where the four points (QI'Q2'°'3) are on a straiyht

line (Figure 23). Then the four curvatures in (5.7) reduce to

1 n~-1
11 ‘12 Yy + Y Rl (5.9a)
. Ry +enln - 1) l-n a 1 -n
22~ % " *Tx, T Tt TR, - (59
bnl + ab(n - 1) + na R1 2 b + ) 2

An {rteresting question is whan does <11 °F %22 become negstive (meaning
s convergent paacil)? This {s answered below:
(1) Negative <11 The transmitted pencil inside the dielectri:

shell {s a convergent one when 11 ¢ 0 or

> |t
a8’ {1 -n Rl] > 0 . (5-10)

If Rl > 0 (concave dielactric interface shown in Figure 24a), this is possible

ifn<1l, If Rl < 0 (convex dielectric intexface shown {n Figure 24b),
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Axial incidence on a syumaetrical sh=ll.
Rl > 0 (concave) and R2 < Q0 (convex).
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(b)

F{gure 4. Condition for s coanvergent beam inside the dielectric shell.
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this 1is possible only 1f n > 1. The distance between point 1 and focal
-1
point Fl is (:11) .
(14) Negative Kyp The transmitted field in the free-~spaca region

outs.de the dielectric shell is convergent whan Kag < 0. Let us concantrata

on a special case in which the thickness of the dielectric shall is small

sc that
b <~ :-1 (5.11)
by 11 * .
‘-
Then Kyq in (5.9b) becomes approximately
1 1 1
Koo 2=+ (0 = 1)[3= = ==| . (5.12)
42 a [RI Rz]
which is the well-known equation for tha thin lens. (See for example
b
. Eq. (41-1), p. 685 of [11]. Note the corresponding notatione used in (11} i
- -1 ) 1
p * B - ' - . - -
- and here: s a, 8’ = -xy,, R1 Rl’ and R2 - Rz.) The condition i

for a negative «,, under the approximation in (5.11) is |

R RZ
1 > 5.13
a> n - 1)(R1 ~ Rz) 0 . (5.13)

(iii) Far Field: 1If the observation point 3 {s in the far zone
(Kzzc >> 1), then DF in (5.6) becomes

DF - {———T'--—} {1 + (-1 F£2 [Rz ; e + 3 [1 - ;]J}::u)

a+=—=bH +c¢ 172
u

The first factor in { } in (5.14) is the divergence factor of a planar
dielectric slad (Rl.n2 + »), Thua, the ratio of the electric field at
a far-field point 3 for a spherical shell and that for a dielecttic

slab is
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|1E8(3) for spherical shell]

n-
|Et(3) for a slab of same thickuess|
~1
R, - R b
ab |F2 - Ry 1[ “11
- - = = o — . Li5
{l + (n-1) Rle[ 5 1+ s t1 3 ]4J (5.1%)

As a numerical exampie, consider the case in which the iuner and cuter
dielectric surfaces are concave and concentric (Ql = Qz) with (Rllb) - 2,
We plot n as a function of (a/b) for n = 0.5 and a = 3 in Figure 25. We
note that n can be substantialiv different frou unity. Wwhen a = Rl, we
have n = 1. Thus, in this interesting special case, the axial far field
through a concentric spherical shell and thzt through a planar slab
become the same. Another interesting special case c:curs when DF - =,
It means that the paraxial rays emerging from the dielectric shell
(Figure 23) are parallel to the axis so that they focus at the far-field
point at infinity. From (5.14), it is shown that DF -~ ~ {f Koy ™ 0 or

Rl - R2 + b(n - 1)/n

erkz = bta = 1)/a] . (5.1%6)

% = (n-1)

Under the thin-lens approximacion b 7 0, (5.16) is reduced to the well-
known leasmiker's equation (see Fq. (41-2), p. 685 of [11l]). 1ir the
antenna radome applicatioa, (5.16) is useful in the determination of the
enhancement of the antenna main beam.

(iv) Multiple Rerraction: For a given source point 0 and observaticn

point 3 in Figure 21 or 22, we can trace two types uf geometrical optics rays.
The first type is the direct ray from 0 to 5 without going through intermal
reflections in the dielectric shell. 1Its field solution is given in (5.3)
which, of course, is the main coatribution. The second type contains

rays which bounce one or more times inside the shell before reaching point 3.

We now consider the contributiou of such multiply refracted rays. For the
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Filgure 25. Transmitted field Ea transmitted through a sprerical shell
ncrmalized by Eb which is that through a dielectric slab.
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axial incidence case (Figure 23), let us further spccialize tae geometry
by setting (Rl,nz) + », The dielectric shell beccaes the slab shown in

figure 26, and the field on the direct ray calculated from (5.3) reads

23 = FL) e

-jko(nb+c) a
[mm]f 5.1D)

where T !y the product of che transmicsion coefficients at points 1 and

2 (Figure 26a)

. -2 [ 2 |
TN T+a{T+ (1/n)], | (5.18) |
!

In a similar manner, we can calculate the field on the multiply vefracted
rays (& twice interually refracted ray is shown in Figure 26b). Super-

iv-osing cheir centributions, we obtain th.. solution for the field st

. S A VST AP

point 2 incluiing the direct and all aultiply refracted rays, namely,

PR

T

-jko(ub+c) , na 1
[na + b + nc

*t. =21
(B0, 1y paye = E (D) @

e e i,

o

@  -j2pk_mdb _ 1120
. {1 + ; e 0 (n 1] na + b + nc 1

pel n+1l na + (2p + 1)h + ncJ ’ )

(5.19) é

Under the condition 3
(a + c) +» (far fizld), or b + 0 (thin slab) (5.20a)

the series in (5.19) can be summed up in a clcasad fory witi: the cvesul:

=k, (nbtc)
0 [ ma___ 1, (5. 20b)

na +b +nc!

-

(£5(3)) -3Q) e

all rays ~lab

when Tslab ia recognized as the transmission coefficient of the slab
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T
T - Y . (5.20‘-‘)
slab , _ [ﬁ—;—ﬂz exp (=} 2kqub)

Cowparing (5.20b) witt (5.17), we note the effec: of the aultiply refracted
rays is accounted for by replacing T by Tnlah' Yhen the condition in
(5.20a) 1s not met, we must evaluaute (5.19) numerically. Let us definc

an error term

[|§t(3)l including p multiply refracted rays
- 1] x 100%. (5.21)

§ =
P llit(3)| including sil aultiply refricted rays

In Tigure (7, we plot SO (including no multiply refracted rays) and 61
(including one multiply refracted ray) vs. u for b = .75 lo and
a +c)/h = 4, Several obiervations are made. (a) For commonly used
values of a (between 1 and 3), the error 60 i{s 13X or less except at
resonances. A resonance occurs when all multiply refracted rays emerging
from the slab are in phase with the Drimary ray. Fcr the comfigurtarion

in Figure 26. the resonance condition is

(nkob/w) - (an/xo) = a positive integer . (5.22)

For zn obliquely incident ray and/or a curved slab, the zonditicm for
resonance is rarely satisfied, Thus, generally speaking, the error for
neglecting the rultiple refraction is ronghly 10X. (b) Ervrors 50 aud 61
have about the same order cof magnitude. Thus, the iuclusion of the first-

order multiply refracted ray does not in general improve the accuracy »f

the solution,
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Figure 27,

Error introduced by neglecting all or all except one multiply
refracted ray in a dielectric slab.
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E. Numerical Results

(a) Radowe. Consider a dielectric spherical radome with an inner
o radius 20 AO‘ a uniform thickness 0.5 XO and n = /5, as shown in Figure 28.
The y-polarized scurce is located at points i, 3, or 4, and {ts radiation

field in the E-plane is given by

-jkor
; t(r,0,0 = 7/2) = & — [y cos (1.5 8)] . (5.23)
_: The transaitted field is calculated from (5.3). For an observation point

in the E-plane and in the far-field zone (x = 0 plane and c + = in Figure 21),

ve may rewrite (5.3) as
-jkor

\ B -1y p' @) , ro= (5.24)

- . where r is the distance from point O to point 3 (Figure 21). We plot pt(e)

as a function of 6 in Figure 28. Generally speaking, the radome wmodifies

the radiation field gentiy, as expected.

(b) Lens I (Double Concave). Unlike the above radome, a dielectric

lens way modify the incident field drastically. Let us consider Lens I,
drawvn approximately to scale in Figure 29. The source is 2 lo avey from
the lens, and is y-polarirzed. Let us concentrate on the field in the
H-plane (x-z plane). In Figure 29, we launch 4 rays 2° apart. The outside
ray (at 6 = 6°) suffers total reflection at the second face of the lens,
and {s not transmicted into the free space region (ve ignore multiple
refractions). We assume the incident field from the source is confined

to & cone (a beam). In the x-z plane, it is given by

~jkar (-
0" jyl , if @8 < 8 (5.25)

t1(x,0,2) = &
0 , 1f 0 >8
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45

In the present case (Lens 1), we choose 0i = 5.5%°. After tronsmission
through the lens, the rays beccome more divergeant, and they are apread

ovaer an angular region of about & < $3.5°, which 1is considezably wider
than the incident angular spread (8 < 5.5°). At an observation point

(r,6,4 = 0), ve express the transmicted field as

-jkor
[}

E‘(r,e.O) - [§ Qt(r.e)] . (5.26)

r

In the sbsence of the lens, Qt'- 1 for 8 < 6i and Qc = 0 for 6 > e‘.

With the lens present, we ploc Qt(t.e) as a function of 6 for r = 2 x 103 AO
in Figure 30, Note that the transmitted field is much weaker (12X or less)
than the incident field becr.ise of the wider spread of the transmitted rays.
For the present casae, Q:(r,e) is only very weakly dependent on r, as

long as r > 190 Xo. Thus, the transmitted field Et in (5.26) iu the far
zone is approximately a spherical wave with an anguler patteir Qt. Every
transuitted ray has two foci. Their distances behind the second face 22

of the lens are (»czl)'1 and (‘22)-1' which may be calculated from (5.7).

in particular, ('cn)—1 is for the normal section »f the wavafront in the
plane of iancidence (x-z plane), wherecas (‘22)-1 1s for that in the

perpendicular plane (defined by the y-axis and the ray direction). For

the third ray (incident 6 = 4°) in Figure 29, we calculate from (5.7) that

1

-1 : -1
(kpy) ™"~ +0.21 & Ky) T ® 40.375 A, (5.27)

o » ¢ 0

We mark the position of the focus corresponding to X1 bv a cross in
Figure 29. The distance between A and the cross is (le)_l. The trace

of the two sets of foci is shown in Figure 31. Thay zre curves on the

two caustic surfaces of the trvansmitted wavefront ({intersection of caustic

surfaces and the x-z plane).
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(c) Lsns I (Doubla convex). The geometry of Lens il and its ray

picture are shown in Fi{gure 32. The incident field 1is given in (5.25) with

e1 = 10°. The iranszittod field in rhe M-plane is expressad in (5.26), where

Qt(r.e) is again very weakly dependent on r in the far szone and is plotted
in Figura 30, We note that the incident 10°-beam 1is now spread into a
67°-beam after transmission through Lens 1I. The peak value of the
transeitted field is about 24X of the incident field at the same far-field
location. The caustic curves are shown in Figure 31.

(d) Lens III (Convexo-Concave). The geometry of Lens III is shown

in Figure 33, The radii (Rl.Rz) of the lens and the source distance
satiafy the lenamaker's equation in (5.16), so that the transmitted rays
near the axial direction are almost parallel and focus at a point at
infinity in the axial direction. The incident field is given in (5.25)

i

with 6 = 12°, The H-plane transmitted ficld FC 1a expressed in (5.26),

where Qt(t,e) varies drastically from the near field zone¢ up to r ~ 100 xo
as seen from Figure 34. Beyond r ~ 100 XO’ the beam becomes narrowver, and
the peak becomes higher with the increase of r. It {s well-krown that

the exact value of the beam's peak (on a caustic surface) cannot be
predicted by the present geometrical optics theory. It can be calculated

from, for e.g., the Huygens-Green formula described in p. 107 of [15).

The caustic curves are shown in Figure 35.
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F. Conclusions
l.; . For a given incident field in (5.1), a geometrical optics sclution of
the transmitted field through a spherical dielectric shell (Figure 22) is
given in (5.3) through (5.7). The present solution is an approximated one.
We sumwmarize its validity and limitations below
(1) Because ray techniques are being employed for the analysis b
presented herein, the radii of curvature should be large

in terms of the incident wavelength in order for the results

to be valid. As in all ray-optical solutions, our solution 3
fails when the observation point is near the caustic surfaces
of the transmitted wavefront. :
(11) The solu%ion given in (5.3) and (5.7) is valid only for 4

splierical shells, and when four poiats (0,1,2,3,) in

Figure 22 are coplanar. These two limitations can be relaxed.
In fact, an explicit GO solution, (which is very similar to

the present one,) for an arbitrarily curved shell, and

arbitrery source and observation pcints is given in [5].
(1i1) Cur solution includes only the contribution from the first-
ordey refracted vray (a direct ray from the source to the
obserration point withcut internal refractions inside the
dielectric shell). It has been estimated that, except at
"resonances' which rarely occur for curved shells, the
error of neglecting higher-order refracted rays ia roughly
122 for n = /E: in the range 1 to 3. It should be pointed
out that the higher-order refracted rays can be calculated

in exactly the same manner as the first-order refracted
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ray by using the formulas derived in this work aand in (5].

It 18 only a matter of bookkeeping and computer tima in

doing the numerical calcu.ations.
For transmission through a curved dielectric shell, the

major field contribution, of course, comes from the refracted

rays which are studied in thiy paper. However otner diffraction

processes exist which wmay not be conveniently fitted into ray
descriptions, and their contribution may be significant under
certain conditions. An example {8 the modal fields guided by
the curved dielectric shell. Efforts to understand its hehavior

in canonical problems have been initicted {16].
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V1. ARRAY COVERED BY RADOME

In this chapter, we study the radiation pattern of a linear array of
eleven point sources enclosed in a radome. The array elements are arranged
symmetrizally along the x-axis with a half-wavelength spacing as shown in

Figure 36. The element pattern is assumed to be of the form
-ik,r
i e ¢ - -
E = (sin ¢ 8 + cos ¢ ¢] cos & . (6.1)

To calculate the array pattern, rays are traced from each source through
the radome as discussed in Chapter I. When the ray tracing is done, there
are two options available in calculating the far fieid: (a) we can calculate
the transmitted field §§ over a planar surface 23 just outside tha2 radome
and then integrate this field to get the far-field pattern; (b) we can push
the surface 23 to infinity and calculate E; on this surface direatly, thus
avolding the integration step-this 1s kncwn as the direct ray method.

Though, in general, both methods do give identical results, the second
method becomes less accurate if the far-field point happens to be in tie
vicinity of the caustic surfaces of the transmitted wavefront. However,
one does not usually confront such a situation in practice. The details
of the calculations using these two methods may be found in [5].

Once the far-field pattern of each source is obtaitied, the sum pattern
is obtained by adding the patterns of the individual elements. A progressive
phase shift ig introduced among the clements to enable beam scanuing. In
the results to follow, we present the H-plane (x-z plane) sum patterns. Thus,

restricting ourselves to this plane, the incident field in (6.1) reduces to

17
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Figure 36. Paraboloidal radowe A generated by Egs. (6.4) and (b.5).
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- -jkor

Ei = Z_!;_.__ cca 6 6.2)

The total transmitted field, summed over gll the sources, may then be

repregented by

R L L TR0
8) _e t r j(n~1) (kdsino+a)
Eom - “Za lE(O)ln v e (6.3)

where IEt(B)In represents the magnitude and o“(e). the phase, of the trans-

mitted £ield due to the nth source, d in the element spacing, and a is

the inter-element phase shift.,

Array patterns were calculated for four types of radomes as specified

in Table I, Twc of the radomes were paraboloids and two were tangent

ogives.

(2) Radome A: This is a paraboloidal radome cf relative dielectric

constant 2.5. The inner and outer surfaces of this radome were generated

by
2y = 50 - (xF + y2) /8l (6.6)
and
2 2 2
z/x, = 50.25 - (x” + y)/(8.160) (6.5)
respectively, The geometry of this radome, along with the eleven element

array, are shown in Figure 36. The H-plane element patterns through the

radome are shown in Figure 37. The H-plane sum patterns are shown in

Figures 58-42 for different scan angles (the scan angles indicated in the

figures are the values for the beam without the radom«, mezsured from

the z-axis).
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Figure 39. Same as Figure 38, excopt for scan angle = -4.95°,
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Figure 40. Same as Figure 18, except for «can angle = -9.89°,
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Figure 41. Same as Figure 318, exc:pt for scan angle = -19.77°,
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TABLE 1
SAHPE e LENGTH DIAMETER WALL
r (External) (External) THICYAN:SS
) *
50.25 XO 40.50 Ao Xo/b
Paraboloid 2.5
"ﬂ
50.50 Ao 49 xo Ao/2.0
Tangent 5.7 14.6 AO 6.7 XO 0.233 xo
Ogive
9.3 14.9 Ao 6.82 \0 0.17¢6 AO

*
Free-space wavelength
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Tigure 43 shows the radome boresight error for this radome. The bore-
sight error is tlhe difrerence between the beam maximum with and without
tl.e radome {(beam maximum with radome) - (beasm maximum without radoms)].

It may also be observed from Figures 38-42 that, as the scan angle ]
increases, the gain decreases because of the decrease in the effective
aperture with increasing scan angle. Yigure 44 shows this gain variation.
Observe that in the presence of the radome the mexiw.m fisld stremgth drops
E, much faster, Also, around the tip region where the curvature is the highest, ‘
the maxiomum field strength decreases faster, and then levels off at higher

scan angles,

(b) Radome B: This is also a paraboloidal radome of ¢ = 2.5, but
the outer surface in this radome was configured so as to make the curvatuvre
*-: in the tip region very close to the critical curvature (see Figure 30, (5]),
thus resulting in a greater focussing action in the z-dirsction. The inner

surface was obtained from (6.4) and the outer surface was obtained from

22y = 50.56 - x* + v/ (7.9203) 6.6)

The geometry of the radore is shown in Figure 45. Observe that the thickness

is maximum along the :¢-sxis and reduces graduslly to zero thickness at the

base.
The H-plane sum patterns are shown in Figures 46-49, and the boresight
error curve is presented in Figure 50. The focussing action of this

radome may be clearly observed in Figure 4€ ~ the axial field strength is i

1.4 times as large as that without the radome. §

|
]
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(¢) Radmaes C and D: These are tangent ogive radomes used in sinsiles.

| “ The gecmetrical configuration is given in Figure 351. Radome C hae L 5.7

l ard radome D <" 9.3. It 2ay be obeerved from Figure 31 that the radums

has a discontinuity in the a-direction. In practice, this discontinuvous tip

| region {o replaced by a smooth curved surface. Nowever, {n our caicuiations, §

' ¢hie mudification was not introduced. The fiuld along the sz-axis wvas :
| calculated by interpolation. !
h The R-plane sum pattarns for radcme C are presented in Pigures 52-37,
and the corvesponding borssight error curva is shown in Pigure 23. The
patterns for radoue D are in Figurcs 39-64, The Horesight error curve is
shown in Figure 65. It may de vdsarved from these figures that the natterna
for smsll scan angles sre not penerally gond. Alsc, the boresight error

at small scan sngles 1s quite high. This behavior is not usually ocbeerved

{
in practical radomes for two ressons: . 1
(1) in practice. the antenn: v usually » rcflector antenna or a |
planar array of conaidersbly large number of elements, whereas . i
in our model, wa have ounly elavin poinc aources .\0/2 apart. 1

If one includes & autficient number of point sources so as to
fatthfully rapresent a given practical antenna, there will bde )
considersble changes {n the sum pstterns and the lLoresight error ‘!;

curves.

(11) The second reason has somethiug to do with cthe tip region. s
Figure 65 sliown a tingent ogive and & parsboloidal radome of
the same asize. It may be observed that the tip reglon in the !
rtangernt ogive (s very ateep whereas in the parabuloid the
surfdice changes acre smoothly.

In genaral, the patterns improve at larger scan angles, as does the

boresight error.
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Same as Figure 52, except for scan angle » -4.95°,
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Figure 65. Boresight error for radome D.
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APPENDIX A

DERIVATION OF EQUATION (5.6)
Referring to Figure 2l, the curvature matrix 4], [10]of the incident

spherical wave may be expressed as

al - A.1)

The curvature matrix of the inner surface of the radome (El) is

Q"= (A.2)

From the knowledge of these two curvature matrices, the curvature matrix of

the refracted ray 1-2 may be exprossed as [4]
Q: = (e‘)'l[eiqiei/n + (cos ab - cos ctilu)Qz]'](e':)'1 (A.3)
1 1 1711 1 1 1 :

where Bi and 9; are coordinate transformation matrices givean by

cos ai 0]
e
31 (A.4)
0 1
cos 0
t
61 = . (A.S)
0 L

Simplifying (A.3), we obtain
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N (A.6)

where %11 and Ky, are defined in (5.7).

The curvature matrix of the wavefront incident at point 2 is given by

Q- teht+v 7t A7)

where I is the identiry watrix. The curvature matrix of the trznsmitted ;

wavefront at 2 can be calculated similarly to that at 1. The final result i

is

[kZI 0
(A.8)

t
Qz- i
0 Koo . i

where x,, and x,, are defined in (5.7).
21 22
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